林辰涛教授(Chentao Lin,Professor)
发布时间 :2022-10-27 浏览次数:


林辰涛教授Chentao Lin,PhD,Professor)

博士生导师,国家特聘专家

联系地址  (Address)

福建农林大学,海峡联合研究院,林学中心

福建省,福州市 350002,仓山区,上下店路15号,邮编:350002

办公室电话:86-591-86392276

Email: chentaolin163@163.com

官网:http://kypy.fafu.edu.cn/bfpc/info/1031/2921.htm


个人简历  (Curriculum Vitae)

       1978-1982年 中国华南热带农业大学,现海南大学 (BS,学士,农学);

       1985-1987年 爱荷华州立大学,Iowa State University, Ames, (MS硕士植物学)

       1987-1992年 密歇根州立大学Michigan State University, East Lansing, (PhD博士遗传学)

       1992-1996年 宾夕法尼亚大学博士后 (生物化学) University of Pennsylvania, Philadelphia

       1996-2022 加州大学洛杉矶分校(UCLA)分子细胞与发育生物学系(Department of Molecular, Cell & Developmental Biology

    历任助理教授(Assistant Professor) 副教授(Associate Professor, with tenure 终身)、教授(Professor)

    于2022629日辞职全职回国。

    现任福建农林大学 “基础林学与蛋白质组学研究中心” 教授、主任


研究领域  (Research Interests)

    植物RNA表观遗传学(Plant RNA epigenetics)

    植物光信号传导机制(Plant cryptochromes and light signal transduction)


研究方向  (Current Research Direction)

    阳光是地球上绝大部分生物体的能量与信息来源,细胞如何感应与传导光信号是生命科学的一个基本问题。RNAN6-甲基腺苷甲基化(简称为RNA甲基化)是动植物体内丰度最高的mRNA修饰形式,其如何影响基因表达是生命科学的另一个基本问题。隐花色素(Cryptochrome, 简称为CRY)是生物界最古老的光受体。隐花色素通过调控RNA甲基化等基因表达步骤而介导细胞对光与时间的响应。RNA甲基化不但影响RNA的剪切、核质转运、降解与翻译等转录后基因调控过程,而且可通过影响染色质结构而调控RNA转录。动植物细胞的隐花色素均可调控RNA甲基化与基因表达而影响细胞的生长发育。本实验室最近发现植物隐花色素通过介导光诱导液态相变募集RNA甲基转移酶、激活mRNA甲基化、从而改变基因表达与植物生长发育。我们目前聚焦于研究隐花色素如何影响RNA甲基化以及RNA甲基化如何影响染色质结构与转录调控。植物隐花色素与RNA甲基化参与许多农林作物产量与抗逆性状的调控过程,而动物隐花色素与RNA甲基化参与许多人类重大疾病的致病过程。隐花色素与RNA表观遗传学作用机理的基础研究有助于改良农林作物,保障人类健康。


       Sun is the ultimate source of energy and information for most organisms on the earth. How cells sense and transmit light signals is a basic issue in life sciences. Cryptochrome (CRY for short) is the oldest photoreceptor presently known. Cryptochrome mediates cellular responses to light and time by regulating various steps of gene expression, including transcription, RNA metabolism, proteolysis, etc. N6-methyladenosine methylation of RNA (RNA methylation for short) is the most abundant form of mRNA modification in animals and plants. How it affects gene expression is another fundamental question in life sciences.  RNA methylation not only affects RNA splicing, nucleoplasm transport, degradation, and translation, but also chromatin structure and chromatin accessibility. Our laboratory recently discovered that plant cryptochrome recruits RNA methyltransferases via light-induced liquid phase transition, activating methyltransferases and mRNA methylation to alter gene expression, plant growth and development. We are currently focusing on how cryptochrome affects RNA methylation and how RNA methylation affects chromatin structure and overall transcriptional activity of the genome. Plant cryptochrome and RNA methylation are important for various yield and stress resistance traits of agricultural and forestry crops, while animal cryptochrome and RNA methylation are involved in the pathogenic process of many major human diseases.  Basic research on the mechanism of cryptochrome and RNA epigenetics will help improve agricultural and forestry crops and human health.


代表性论文  (Representative publications from>200)

     

   Jiang B,Zhong Z,Gu L,Zhang X,Wei J,Ye C,Lin G,Qu G,Xiang X,Wen C,Gateas M,Bailey-Serres J,Wang Q,He C, Wang X and Lin C. (2023)Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis.Nature Plants. https://doi.org/10.1038/s41477-023-01580-0.2023-NP.pdf

    Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M, Noory E , Wang Q and Lin C.(2021) A photoregulatory mechanism of the circadian clock in Arabidopsis.Nature Plants  7: 1397–1408. 2021NP.pdf

    Wang Q and Lin C. (2020) Mechanisms of cryptochrome-mediated photoresponses in plants. Annual Review of Plant Biology 71:103-129. Annual Review of Plant Biology.pdf

    Wang Q, Zuo Z, Wang X, Gu L, Yoshizumi T, Yang Z, Yang L, Liu Q, Liu W, Han Y-J, Kim J-I, Liu L, Wohlschlegel J M, Matsui M, Oka Y and Lin C.(2016) Photoactivation and inactivation of Arabidopsis cryptochrome 2 .Science 354:343-347. 2016 Science.pdf

    Liu H,Yu X, Li K, Klejnot J, Yang H, Lisiero D and Lin C. (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis .Science 322: 1535-1539. 2008 Science.pdf

   Shalitin D, Yang H, Mockler T C, Maymon M, Guo H, Whitelam G C and Lin C. (2002) Regulation of Arabidopsis cryptochrome 2 by blue light-dependent phosphorylation.Nature 417:763-767. 2002 Nature.pdf

   Guo H, Yang H, Mockler T C and Lin C.  (1998) Regulation of  flowering time by Arabidopsis photoreceptors .Science 279:1360-1363. 1998 Science.pdf

   Lin C, Robertson D E, Ahmad M, Reibaks A, Jorns M, Dutton L and Cashmore A R. (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 .Science   269:968-970. 1995 Science.pdf